SVitchboard 1: Small Vocabulary Tasks from Switchboard 1

نویسندگان

  • Simon King
  • Chris Bartels
  • Jeff Bilmes
چکیده

We present a conversational telephone speech data set designed to support research on novel acoustic models. Small vocabulary tasks from 10 words up to 500 words are defined using subsets of the Switchboard-1 corpus; each task has a completely closed vocabulary (an OOV rate of 0%). We justify the need for these tasks, describe the algorithm for selecting them from a large corpus, give a statistical analysis of the data and present baseline whole-word hidden Markov model recognition results. The goal of the paper is to define a common data set and to encourage other researchers to use it.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SVitchboard 1: Small Vocabulary Ta

We present a conversational telephone speech data set designed to support research on novel acoustic models. Small vocabulary tasks from 10 words up to 500 words are defined using subsets of the Switchboard-1 corpus; each task has a completely closed vocabulary (an OOV rate of 0%). We justify the need for these tasks, describe the algorithm for selecting them from a large corpus, give a statist...

متن کامل

SVitchboard II and fiSVer i: high-quality limited-complexity corpora of conversational English speech

In this paper, we introduce a set of benchmark corpora of conversational English speech derived from the Switchboard-I and Fisher datasets. Traditional ASR research requires considerable computational resources and has slow experimental turnaround times. Our goal is to introduce these new datasets to researchers in the ASR and machine learning communities (especially in academia), in order to f...

متن کامل

Resegmentation of SWITCHBOARD

The SWITCHBOARD (SWB) corpus is one of the most important benchmarks for recognition tasks involving large vocabulary conversational speech (LVCSR). The high error rates on SWB are largely attributable to an acoustic model mismatch, the high frequency of poorly articulated monosyllabic words, and large variations in pronunciations. It is imperative to improve the quality of segmentations and tr...

متن کامل

Prosodically-enhanced recurrent neural network language models

Recurrent neural network language models have been shown to consistently reduce the word error rates (WERs) of large vocabulary speech recognition tasks. In this work we propose to enhance the RNNLMs with prosodic features computed using the context of the current word. Since it is plausible to compute the prosody features at the word and syllable level we have trained the models on prosody fea...

متن کامل

Factorized Deep Neural Networks for Adaptive Speech Recognition

Recently, we have shown that context-dependent deep neural network hidden Markov models (CD-DNN-HMMs) can achieve very promising recognition results on large vocabulary speech recognition tasks, as evidenced by over one third fewer word errors than the discriminatively trained conventional HMM-based systems on the 300hr Switchboard benchmark task. In this paper, we propose and describe two type...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005